3D printing Chocolate innovations, Food for thought!?

http://qz.com/77751/3d-printing-chocolate-is-a-cool-idea-and-someone-is-trying-to-patent-it/

 

PATENTLY OBVIOUS?

3D printing chocolate is a cool idea, and someone is trying to patent it

By Leo Mirani @lmirani April 24, 2013

Yes, but does it come in fruit ‘n’ nut? Jens-Ulrich Koch/dapd

If there is one thing the patent wars in the mobile industry have taught us, it is that the price of innovation can be ruinously expensive. By one estimate, there are over 250,000 active patents affecting smartphones, or about 16% of all patents presently in force in America. One reason for that astonishing number is that patents are granted not just for groundbreaking innovations but also for relatively straightforward things such as the “slide-to-unlock” feature on the iPhone. That means lawsuits or hefty license fees for those who want build on existing work.

Observers fear that the young and rapidly growing field of 3D printing could fall into the same morass. At the moment, 3D printing is seeing a lot of innovation coming from enthusiasts who openly publish and share their work. But if applications to patent similar technology are granted, that means innovators may find themselves unable to use existing ideas for the 20-year life of a US patent.

A coalition of groups is now trying to ensure this does not happen. The Electronic Frontier Foundation, a two-decades-old American digital rights advocacy teamed up with the Cyberlaw Clinic at Harvard and Ask Patents, a Q&A site, to challenge a series of 3D printing-related patents pending approval in the US. Among these is one that seeks to patent the technology required to 3D print chocolate.

Kit Walsh, a lawyer at the Cyberlaw Clinic, says that challenging that particular patent is not really about chocolate, but about the idea that chocolate is just another material that can be melted and later solidified into new shapes. “If you let people get patents on every material that has those properties, you’re going to occupy 3D printing,” he said over the phone from Cambridge, MA.

The goal of the coalition stretches beyond protecting 3D printing. Walsh says they will expand their efforts to challenge patents related to mesh networking technology, a  new form of wireless communication. But the bigger idea is that their submissions could serve as a model for people who want to use a new procedure.

The group uses a provision in the America Invents Act, a new law that updates the United States’ creaking patent rules. The provision allows third parties—anybody from interested individuals to big corporations—to submit “prior art” that could help patent examiners determine whether an invention is obvious, and therefore unworthy of a patent. It is particularly enlightened law that should help those seeking to challenge patents as well as examiners themselves.

For challengers, it means a relatively simple, lawyer-free method of submitting prior art. In the past, the only procedure was a re-examination request, which could cost up to $20,000. By contrast, the new procedure is free for anybody making less than three submissions and just $180 for every 10.

Examiners too benefit because 3D printing covers a number of disciplines from chemistry to mechanical engineering. Individual examiners cannot be experts in every field, so additional submissions help them make better decisions.

Arduino Mega Pololu Shield – RAMPS information & schematic

RepRap Arduino Mega Pololu Shield, or RAMPS for short. It is designed to fit the entire electronics needed for a RepRap in one small package for low cost. RAMPS interfaces an Arduino Mega with the powerful Arduino MEGA platform and has plenty room for expansion. The modular design includes plug in stepper drivers and extruder control electronics on an Arduino MEGA shield for easy service, part replacement, upgrade-ability and expansion. Additionally, a number of Arduino expansion boards can be added to the system as long as the main RAMPS board is kept to the top of the stack.

Contents

Introduction

Version 1.4 uses surface mount capacitors and resistors to further cover edge issue cases. As of version 1.3 in order to fit more stuff RAMPS is no longer designed for easy circuit home etching. If you want to etch your own PCB either get version 1.25 or Generation 7 Electronics. Version 1.25 and earlier are “1.5 layer” designed boards (i.e. it’s double sided board, but one of layers can easily be replaced with wire-jumpers) that is printable on your RepRap with the etch resist pen method, or home fabbed with toner transfer.

This board is mostly based on Adrian’s Pololu_Electronics and work by Tonok. Copper etch resists methods suggested by Vik. Also inspired by Vik’s work with EasyDrivers. Circuit design based mostly on Adrian’s Pololu_Electronics. Joaz at RepRapSource.com supplied initial pin definitions and many design improvements. Much inspiration, suggestions, and ideas from Prusajr, Kliment, Maxbots, Rick, and many others in the RepRap community.

  • Mendel printed RAMPS wired to Mendel.

  • Mendel with RAMPS in enclosure mounted.

  • screen capture of 2-sided RAMPS layout

  • commercially fabbed 2-sided RAMPS wired to Mendel

Features

  • It has provisions for the cartesian robot and extruder.
  • Expandable to control other accessories.
  • 3 mosfets for heater / fan outputs and 3 thermistor circuits.
  • Fused at 5A for additional safety and component protection
  • Heated bed control with additional 11A fuse
  • Fits 5 Pololu stepper driver board
  • Pololu boards are on pin header sockets so they can be replaced easily or removed for use in future designs.
  • I2C and SPI pins left available for future expansion.
  • All the Mosfets are hooked into PWM pins for versatility.
  • Servo style connectors are used to connect to the endstops, motors, and leds. These connectors are gold plated, rated for 3A, very compact, and globally available.
  • USB type B receptacle
  • SD Card add on available — Available now made by Kliment – Sdramps
  • LEDs indicate when heater outputs on
  • Option to connect 2 motors to Z for Prusa Mendel

 

 

 

Safety Tip

Generation3Electronics-achtung.gif

Once you start putting electricity into your RepRap – even at just 12 volts – you have to take basic, common sense precautions to avoid fires. Just in case these fail, test your workshopsmoke detector. Don’t have a smoke detector? Get one!

Schematic

Current schematic shown. For older versions click the image. Click again for full image. This is the schematic of the shield.

Change Log

  • 1.4 August 4, 2011
  1. Changed capacitors and resistors to surface mount components
  2. Added LEDs to mosfet outputs
  3. Added bulk capacitors for each stepper driver
  4. Added pull up resistors to enable to override the Pololu drivers default enabled state
  5. Added mosfet gate resistors
  6. Added pull-ups for I2C
  7. Servo1 connector moved to pin 11 to free 7 for ADK
  8. Fixed thermals
  9. Servo 5V supply is only connected to VCC if a jumper is added
  10. Reset switch changed for small footprint
  11. Moved Aux conectors around a bit and increased board size ~0.1″
  12. Added some space around Q3 for a small heatsink
  • 1.3 May 13, 2011
  1. Added 5th stepper driver socket
  2. Added 3rd thermistor circuit
  3. Added Heated bed circuit w/ 11A PTC fuse, changed to 4 position pluggable input jack to accommodate additional current
  4. Increased board size to 4″x2.32″
  5. Pin order on heater outputs changed
  6. Increased spacing increased to accommodate different connectors
  7. Added connectors for optional 2 motors on Z driver
  8. Added connector for PS control
  9. Improved expansion connector layout
  10. Moved LED towards corner and added resistor to LED circuit
  11. No longer optimised for home etching 🙁
  12. License changed to GPL v3 or newer
  • v1.2 January 04, 2011
  1. Added 0.1″ motor connector to RAMPS for each driver (motors no longer have to be connected on top of stepper drivers)
  2. Added breakouts for serial and I2C
  3. Changed extra power and pin headers around for easier connection to extra boards.
  4. Lost most extra analog breakouts
  5. More silk screen and bottom layer fixing
  • v1.1 September 30, 2010
  1. Replaced power barrel jack with plug-able screw terminal
  2. Added jumpers to select micro-stepping on stepper driver boards
  3. Added debug LED
  4. Changed mosfet pins to be compatible with FiveD firmware
  5. Reduced number of 100uF capacitors to 1
  6. Added 100nF capacitor to 12V input
  7. Put auxiliary 12VIN and GNDIN pads in a straight line
  8. Silk screen and bottom layer cleaned up
  • v1.0 Original RAMPS PCB design
  • v0.1? Point to point wired Arduino MEGA Prototype shield

    Troubleshooting

    • Check List
    1. RAMPS shield firmly seated on Arduino MEGA
    2. No stray wires/metal to cause short
    3. All connections firmly seated, screws tight
    4. Power connection oriented correctly, connected to RAMPS shield (only USB is connected to MEGA)
    5. Thermistor connected to T0
    6. Firmware uploaded
    7. Stepper driver potentiometers to a sane setting (maybe 25% from CCW to start, adjust to enough power to drive axis + not overheat)
    8. Heater wires properly connected
    • Cannot connect?
      • Verify firmware and host software baud rate matches
      • Disconnect USB, reconnect, and retry
      • It may be a problem with the software you’re using (repsnapper). Try using pronterface.
    • Stepper motor getting too hot?
      • Adjust the potentiometer (small screw) on the stepper driver in question by rotating the screw counterclockwise to decrease the current going to the stepper motor.
    • My fan is not working.
      • If you have RAMPs 1.3+ and sprinter firmware (set with the default pins for RAMPs 1.3), try attaching the fan to D9 output.
      • In pronterface, the fan can be turned on by using the M106 command and turned off with M107.

    Stepper Driver Testing

    If you are not sure whether you have a problem with your RAMPS or the stepper drivers you can test that the driver is getting the power and signals it needs to work.

    • Stepper motors getting too hot?
      • Adjust the potentiometer (small screw) on the stepper driver by rotating the screw counterclockwise to decrease the current going to the stepper motor.

    Use a meter of some sort to test the signals at one of the motor drivers. Be careful not to short anything out. You can use a (-) pad in AUX-1 for ground and test the voltage on VMOT, VDD, EN, STEP, and DIR. If all of these are working correctly then the stepper driver is likely bad.

                        High(5V) when disabled, Low when enabled  EN-|     |-VMOT  12V (or voltage at 5A side of input power connector
                                                  Set by Jumper  MS1-|     |-GND 0V                 
                                                  Set by Jumper  MS2-|     |-1A     ---------------| <Motor Coil A   
                                                  Set by Jumper  MS3-|     |-2A     ---------------|____
                                         Not used (tied to SLP)  RST-|     |-1B      -----------------/  |  <Motor Coil B
                                         Not used (tied to RST)  SLP-|     |-2B      -------------------/
                                      Pulse High for each step  STEP-|     |-VDD  5V
    Switches between High and Low when driven direction changes  DIR-|     |-GND 0V

     

    Q&A

    • What power supply you recommend for your ramps board. I have just finished assembly and looking at the diagrams for a pc power supply and wondering about the separate amperages for the extruder and heated bed. Can they be higher amps without damage?

    Yes, the power supply being capable of more amps than required is the desired configuration. The current shown are the max supported by RAMPS and is the minimum the power supply should be capable of. It is also OK to have both of the inputs on RAMPS connected to one PSU with enough capacity. If you are not using a heated bed the entire thing can run off the 5A side (D8 will just not work).

    • I got a RAMPS V1.3 as part of a kit, but it doesn’t have any installation instructions – just a schematic. Can you point us to a good tutorial for connecting everything? (i.e. stepper motors, opto flag pcb’s, power, data, etc) Some of it (like the single USB port) is obvious, but some of it isn’t.

    See RAMPS1.3 for instructions for version 1.3. There is a version navigation bar at the top of the RAMPS pages that allow you to jump to a specific versions instructions. There is a very helpful graphic under Final Check section.

    • For RAMPS V1.3 the power section of the schematic shows several places with GND/12V (C4/C6, X4-2/1, X4-4/3, VCC/D12). Which one is the GND/12V from the power supply? Is it the round power plug like a laptop power plug? Also, is the outside of that plug GND while the inside is +12V? My kit came with a note warning not to reverse the input power or it would cook the board . . . and a plug adapter with no labels that can be installed either way.

    See the connecting power section of your version’s page. The round plug is on the Arduino MEGA and will only power the MEGA. You need to power the green pluggable connector, it should not be reversible and the board should be marked (+) and (-).

3D Extruders

The Darwin and Mendel Repraps were designed to extrude PLA plastic. People have developed many ways of improving on the original extruder. It didn’t take long before people starting trying to make them extrude other pastes, including ABS and even delicious frosting: Frostruder[1]. RepRap forums: “Frostruder MK2 = Granular extruder?”[2].

To extrude plastic filament, you need to force the raw material (usually a 1.75mm or 3mm diameter filament) with the drive of the “Cold End” out of the extruder. The filament should then go through the “Hot End” of the extruder with the heater and out of the nozzle at a reasonable speed. The extruded material falls onto the build platform (sometimes heated) and then layer by layer onto the part as it is built up.

The “Cold End” is usually the bulk of the extruder. It is often the actual carriage on one axis and supports the rest of the parts. In some designs, the “Cold End” is split into two parts; one part does the driving of the filament that is stationary and connected to the carriage portion, of a lighter weight design for easier movement, with aflexible tube. The drive is a motor that rotates a knurled, hobbed, or toothed pinch wheel against a pressure plate or bearing with the filament forced between them. Usually, the motor is geared to the pinch wheel to increase available torque and extrusion control (smoothness). The gearing can be a 3D printed pinion and gear, stock worm wheel and gear, or a more expensive integral motor gearbox. Stepper motors are used almost universally after initial trials with DC motors did not achieve the required repeatability. Servo motors are an option, though they are not seen in the literature yet. The final function, some form of cooling, keeps the “Cold End” cold. With the close proximity to the “Hot End” and possible heated build platforms and enclosures, it is sometimes necessary to have additional passive or active cooling of the cold end parts. Heat sinks and fans are often used; water and Peltier effect cooling is also discussed. Much of this bulk is usually made from 3D printed parts and the temperature is maintained within safe limits.

The “Cold End” is connected to the “Hot End” across a thermal break or insulator (the Bowden tube if used is on the cold side of this thermal break). This has to be rigid and accurate enough to reliably pass the filament from one side to the other, but still prevent much of the heat transfer. The materials of choice are usually PEEK plastic with PTFE liners or PTFE with stainless steel mechanical supports or a combination of all three.

The “Hot End” is the active part of the 3D printer that melts the filament. It allows the filament to exit from the small nozzle to form a thin and tacky bead of plastic that will adhere to the material it is laid on. Usually, the “Hot End” is made of brass. However, sometimes glass or aluminium is used. It consists of a barrel with a melting zone or chamber near the tip closed off with a fixed or removable nozzle with a diameter of between 0.3mm and 1.0mm with typical size of 0.5mm with present generation extruders. Outside the tip of the barrel is a heating means, either a wire element or a standard wire wound resistor. The heat required is of the order of 20W with typical temperatures around 150 to 250 degrees Centigrade. For feedback control of the nozzle temperature, a thermistor is usually attached close to the nozzle, though a thermocouple may serve with suitable control hardware. High temperature materials are needed here. These include metals, cements and glues, glass and mineral fibre materials,PEEKPTFE and Kapton tape.

IMG_0356

The RepRap Project

The RepRap project is an initiative to develop a 3D printer that can print most of its own components. RepRap (short for replicating rapid prototyper) uses a variant of fused deposition modeling, an additive manufacturing technique. The project calls it Fused Filament Fabrication (FFF) to avoid trademark issues around the “fused deposition modeling” term.

As an open design, all of the designs produced by the project are released under a free software license, the GNU General Public License.

To date, the RepRap project has released four 3D printing machines: “Darwin”, released in March 2007, “Mendel”, released in October 2009, “Prusa Mendel” and “Huxley” released in 2010. Developers have named each after famous evolutionary biologists, as “the point of RepRap is replication and evolution”.

Due to the self-replicating ability of the machine, authors envision the possibility to cheaply distribute RepRap units to people and communities, enabling them to create (or download from the Internet) complex products without the need for expensive industrial infrastructure (distributed manufacturing)[1] including scientific equipment.[2] They intend for the RepRap to demonstrate evolution in this process as well as for it to increase in number exponentially.

History

RepRap was founded in 2005 by Dr Adrian Bowyer, a Senior Lecturer in mechanical engineering at the University of Bath in the United Kingdom.

Reprap family tree visualising the evolution of the RepRap and some other 3d printers over time

23 March 2005
The RepRap blog is started.
Summer 2005
Funding for initial development at the University of Bath is obtained from the UK’s Engineering and Physical Sciences Research Council
13 September 2006
The RepRap 0.2 prototype successfully prints the first part of itself, which is subsequently used to replace an identical part originally created by a commercial 3D printer.
9 February 2008
RepRap 1.0 “Darwin” successfully makes at least one instance of over half its total rapid-prototyped parts.
14 April 2008
Possibly the first end-user item is made by a RepRap: a clamp to hold an iPod securely to the dashboard of a Ford Fiesta.
29 May 2008
Within a few minutes of being assembled, the first completed “child” machine makes the first part for a “grandchild” at the University of Bath, UK.
23 September 2008
It is reported that at least 100 copies have been produced in various countries. The exact number of RepRaps in circulation at that time is unknown.[3]
30 November 2008
First documented “in the wild” replication occurs. Replication is completed by Wade Bortz, the first user outside of the developers’ team to produce a complete set for another person.
20 April 2009
Announcement of first electronic circuit boards produced automatically with a RepRap, using an automated control system and a swappable head system capable of printing both plastic and conductive solder. Part is later integrated into the RepRap that made it.
2 October 2009
The second generation design, called “Mendel”, prints its first part. The Mendel’s shape resembles a triangular prism rather than a cube.
13 October 2009
RepRap 2.0 “Mendel” is completed.
27 January 2010
The Foresight Institute announces the “Kartik M. Gada Humanitarian Innovation Prize” for the design and construction of an improved RepRap. There are two prizes, one of US$20,000, and another of $80,000. The administration of the prize is later transferred toHumanity+.[4]
31 August 2010
The third generation design, “Huxley”, is officially named. Development is based on a miniaturized version of the Mendel hardware with 30% of the original print volume.
First half 2012
RepRap and RepStrap building and usage are widespread within the tech, gadget, and engineering communities. RepRaps or commercial derivatives have been featured in many mainstream media sources, and are on the permanent watch lists of such tech media as Wired and some influential engineering-professionals’ news media.[5]
Late summer/fall 2012
There has been much focus on smaller startup companies selling derivatives, kits, and assembled systems, and R & D results into new related processes for 3D Printing at orders-of-magnitude-lower prices than current industrial offers. In terms of RepRap research, the most notable result is perhaps the first successful Delta design, Rostock, which is maturing slowly and has an initial working solution for experimentation by self-sourcing builders of some experience. While the Rostock is still in an experimental stage with major revisions almost monthly, it is also near the state of the art, and a radically different design. Latest iterations use OpenBeams, wires (typically Dyneema or Spectra fishing lines) instead of belts, and so forth, which also represents some of the latest trends in RepRaps.

Hardware

As an open-source project designed to encourage evolution, many variations exist, and the designer is free to make modifications and substitutions as they see fit. However, RepRap 3D printers generally consist of a thermoplastic extruder mounted on a computer-controlledCartesian XYZ platform. The platform is built from steel rods and studding connected by printed plastic parts. All three axes are driven bystepper motors, in X and Y via a timing belt and in Z by a leadscrew.

At the heart of the RepRap is the thermoplastic extruder. Early extruders for the RepRap used a geared DC motor driving a screw pressed tightly against plastic filament feedstock, forcing it past a heated melting chamber and through a narrow extrusion nozzle. However, due to their large inertia, DC motors cannot quickly start or stop, and are therefore difficult to control with precision. Therefore, more recent extruders use stepper motors (sometimes geared) to drive the filament, pinching the filament between a splined or knurled shaft and a ball bearing.

RepRap’s electronics are based on the popular open-source Arduino platform, with additional boards for controlling stepper motors. The current version electronics uses an Arduino-derived Sanguino motherboard, and an additional, customized Arduino board for the extruder controller. This architecture allows expansion to additional extruders, each with their own extruder controller.

Major revisions

The first publicly released RepRap, Darwin, has an XY gantry mounted above a moving Z-axis print bed. Darwin’s Z axis is constrained by a leadscrew at each corner, all linked together by timing belts to turn in unison. Electronics are mounted on the steel supports of its cuboid exterior, and on a second platform at the base. In an effort to minimize the number of non-printed components (or “vitamins”), Darwin uses printed sliding contact bearings on all of its axes.

Mendel replaced Darwin’s sliding bearings with ball bearings, using an exactly constrained design that minimizes friction and tolerates misalignment. It also rearranged the axes, so that the bed slides in the horizontal Y direction, while the extruder moves up and down and in the X direction. This makes Mendel less top-heavy and more compact than Darwin, while also removing the overconstraint of Darwin’s four Z axis leadscrews. The build envelope for Mendel is 200 mm (W) × 200 mm (D) × 140 mm (H) or 8″ (W) × 8″ (D) × 5.5″ (H).

Software

RepRap has been conceived as a complete replication system rather than simply a piece of hardware. To this end the system includescomputer-aided design (CAD) in the form of a 3D modeling system and computer-aided manufacturing (CAM) software and drivers that convert RepRap users’ designs into a set of instructions to the RepRap hardware that turns them into physical objects.

Initially two different CAM toolchains have been developed for the RepRap. The first, simply titled “RepRap Host”, was written in Java by lead RepRap developer Adrian Bowyer. The second, “Skeinforge”, was written independently by Enrique Perez. Both are complete systems for translating 3D computer models into G-code, the machine language that commands the printer.

Later, other programs like slic3r, pronterface, Curarepetier host were created. The closed source KISSlicer also seems popular.

Virtually any CAD or 3D modeling program can be used with the RepRap, as long as it is capable of producing STL files.(slic3r also supports .obj and .amf files) Content creators make use of any tools they are familiar with, whether they are commercial CAD programs, such as SolidWorks, or open-source 3D modeling programs like Blender or OpenSCAD.

Replication materials

RepRaps print objects from ABSPolylactic acidNylon(possibly not all extruders capable), HDPE and similar thermopolymers.

Polylactic acid has the engineering advantages of high stiffness, minimal warping, and an attractive translucent colour. It is also biodegradable and plant-derived.

Unlike in most commercial machines, RepRap users are encouraged to experiment with printing new materials and methods, and to publish their results. Methods for printing novel materials (such as ceramics) have been developed this way. In addition, several RecycleBots have been designed and fabricated to convert waste plastic, such as shampoo containers and milk jugs, into inexpensive RepRap filament.[6]

The RepRap project has not yet identified a suitable support material to complement its printing process.

Printing electronics is a major goal of the RepRap project so that it can print its own circuit boards. Several methods have been proposed:

  • Wood’s metal or Field’s metal: low-melting point metal alloys to incorporate electrical circuits into the part as it is being formed.
  • Silver/carbon-filled polymers: commonly used for repairs to circuit boards and are being contemplated for use for electrically conductive traces.[7]
  • Direct extrusion of solder
  • Conductive wires: can be laid into a part from a spool during the printing process

Construction

Other 3D printer designs (such as the commercial Makerbot) and parts constructed by other means (such as Meccano) may be used to “bootstrap” the RepRap process by building RepRap parts. Many such machines are based around RepRap designs and use RepRap electronics. These are generally known by the name RepStrap (for “bootstrap RepRap”) by the RepRap community. A RepStrap is any open-hardware rapid-prototyping machine that makes RepRap parts and is itself made by fabrication processes which aren’t under the RepRap umbrella yet. Some RepStrap designs are similar to Darwin or Mendel, but have been modified to be made from laser cut sheets or milled parts. Others, such as the Makerbot, share some design elements with the RepRap (especially electronics) but with a completely reconfigured mechanical structure.

Although the aim of the project is for RepRap to be able to autonomously construct many of its own mechanical components in the near future using fairly low-level resources, several components such as sensors, stepper motors, or microcontrollers are currently non-replicable using the RepRap’s 3D printing technology and therefore have to be produced independently of the RepRap self-replicating process. The goal is to asymptotically approach 100% replication over a series of evolutionary generations. As one example, from the onset of the project, the RepRap team has explored a variety of approaches to integrating electrically-conductive media into the product. The future success of this initiative should open the door to the inclusion of connective wiringprinted circuit boards, and possibly even motors in RepRapped products. Variations in the nature of the extruded, electrically-conductive media could produce electrical components with different functions from pure conductive traces, not unlike what was done in the sprayed-circuit process of the 1940s named Electronic Circuit Making Equipment (ECME), described in the article on its designer, John SargrovePrinted electronics is a related approach. Another non-replicable component is the threaded rods for the linear motions. A current research area is in using replicated Sarrus linkages to replace them.[8]

Project members

The “Core team” of the project[9] includes:

  • Sebastien Bailard, Ontario
  • Dr. Adrian Bowyer, Senior Lecturer, Mechanical Engineering Department, University of Bath
  • Michael S. Hart, creator of Project Gutenberg, Illinois
  • Dr. Forrest Higgs, Brosis Innovations, Inc., California
  • Rhys Jones, postgraduate, Mechanical Engineering Department, University of Bath
  • James Low, undergraduate, Mechanical Engineering Department, University of Bath
  • Simon McAuliffe, New Zealand
  • Vik Olliver, Diamond Age Solutions, Ltd., New Zealand
  • Ed Sells, postgraduate, Mechanical Engineering Department, University of Bath
  • Zach Smith, United States
  • Erik de Bruijn, The Netherlands
  • Josef Průša, The Czech Republic

Project sponsors include:[10]

Goals

The stated goal of the RepRap project is to produce a pure self-replicating device not for its own sake, but rather to put in the hands of individuals anywhere on the planet, for a minimal outlay of capital, a desktop manufacturing system that would enable the individual to manufacture many of the artifacts used in everyday life. From a theoretical viewpoint, the project is attempting to prove the hypothesis that “Rapid prototyping and direct writing technologies are sufficiently versatile to allow them to be used to make a von Neumann Universal Constructor“.[11]

The self-replicating nature of RepRap could also facilitate its viral dissemination and may well facilitate a major paradigm shift in the design and manufacture of consumer productsfrom one of factory production of patented products to one of personal production of un-patented products with open specifications. Opening up product design and manufacturing capabilities to the individual should greatly reduce the cycle time for improvements to products and support a far larger diversity of niche products than the factory production run size can support.

What is 3D Printing?

Additive manufacturing or 3D printing[1] is a process of making a three-dimensional solid object of virtually any shape from a digital model. 3D printing is achieved using an additive process, where successive layers of material are laid down in different shapes.[2] 3D printing is also considered distinct from traditional machining techniques, which mostly rely on the removal of material by methods such as cutting or drilling (subtractive processes).

A materials printer usually performs 3D printing processes using digital technology. The first working 3D printer was created in 1984 by Chuck Hull of 3D Systems Corp.[3] Since the start of the 21st century there has been a large growth in the sales of these machines, and their price has dropped substantially.[4] According to Wohlers Associates, a consultancy, the market for 3D printers and services was worth $2.2 billion worldwide in 2012, up 29% from 2011.[5]

The 3D printing technology is used for both prototyping and distributed manufacturing with applications in architecture, construction (AEC),industrial design, automotive, aerospace, military, engineering, civil engineering, dental and medical industries, biotech (human tissue replacement), fashion, footwear, jewelry, eyewear, education, geographic information systems, food, and many other fields. It has been speculated[6] that 3D printing may become a mass market item because open source 3D printing can easily offset their capital costs by enabling consumers to avoid costs associated with purchasing common household objects.[7]

Terminology

Although scientists and technicians have long been fascinated with the idea of replicating technology, it was not until the 1980s that the concept of 3D printing really began to be taken seriously.[8]. The man most often credited with inventing the language of ‘modern’ 3D printer is Charles W. Hull, who first patented the term ‘stereolithography’ (defined as “system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed”) in 1984.[9][10]

The term additive manufacturing refers to technologies that create objects through a sequential layering process. Objects that are manufactured additively can be used anywhere throughout the product life cycle, from pre-production (i.e. rapid prototyping) to full-scale production (i.e. rapid manufacturing), in addition to tooling applications and post-production customization.

In manufacturing, and machining in particular, subtractive methods are typically coined as traditional methods. The very term subtractive manufacturing is a retronym developed in recent years to distinguish it from newer additive manufacturing techniques. Although fabrication has included methods that are essentially “additive” for centuries (such as joining plates, sheets, forgings, and rolled work via riveting, screwing, forge welding, or newer kinds of welding), it did not include the information technology component of model-based definition. Machining (generating exact shapes with high precision) has typically been subtractive, from filing and turning to milling and grinding.

General principles

3D model slicing.

Modeling

Additive manufacturing takes virtual blueprints from computer aided design (CAD) or animation modeling software and “slices” them into digital cross-sections for the machine to successively use as a guideline for printing. Depending on the machine used, material or a binding material is deposited on the build bed or platform until material/binder layering is complete and the final 3D model has been “printed.”

A standard data interface between CAD software and the machines is the STL file format. An STL file approximates the shape of a part or assembly using triangular facets. Smaller facets produce a higher quality surface. PLY is a scanner generated input file format, and VRML(or WRL) files are often used as input for 3D printing technologies that are able to print in full color.

Printing

To perform a print, the machine reads the design from an .stl file and lays down successive layers of liquid, powder, paper or sheet material to build the model from a series of cross sections. These layers, which correspond to the virtual cross sections from the CAD model, are joined or automatically fused to create the final shape. The primary advantage of this technique is its ability to create almost any shape or geometric feature.

Printer resolution describes layer thickness and X-Y resolution in dpi (dots per inch),[citation needed] or micrometers. Typical layer thickness is around 100 micrometers (µm), although some machines such as the Objet Connex series and 3D Systems’ ProJet series can print layers as thin as 16 µm.[11] X-Y resolution is comparable to that of laser printers. The particles (3D dots) are around 50 to 100 µm in diameter.

Construction of a model with contemporary methods can take anywhere from several hours to several days, depending on the method used and the size and complexity of the model. Additive systems can typically reduce this time to a few hours, although it varies widely depending on the type of machine used and the size and number of models being produced simultaneously.

Traditional techniques like injection molding can be less expensive for manufacturing polymer products in high quantities, but additive manufacturing can be faster, more flexible and less expensive when producing relatively small quantities of parts. 3D printers give designers and concept development teams the ability to produce parts and concept models using a desktop size printer.

Finishing

Though the printer-produced resolution is sufficient for many applications, printing a slightly oversized version of the desired object in standard resolution, and then removing material with a higher-resolution subtractive process can achieve greater precision.

Some additive manufacturing techniques are capable of using multiple materials in the course of constructing parts. Some are able to print in multiple colors and color combinations simultaneously. Some also utilize supports when building. Supports are removable or dissolvable upon completion of the print, and are used to support overhanging features during construction.

Additive processes

Rapid prototyping worldwide 2001[12]

The Audi RSQ was made with rapid prototyping industrial KUKA robots.

Several different 3D printing processes have been invented since the late 1970s. The printers were originally large, expensive, and highly limited in what they could produce.[13]

A number of additive processes are now available. They differ in the way layers are deposited to create parts and in the materials that can be used. Some methods melt or soften material to produce the layers, e.g. selective laser melting (SLM) or direct metal laser sintering(DMLS), selective laser sintering (SLS), fused deposition modeling (FDM), while others cure liquid materials using different sophisticated technologies, e.g. stereolithography (SLA). With laminated object manufacturing (LOM), thin layers are cut to shape and joined together (e.g. paper, polymer, metal). Each method has its own advantages and drawbacks, and some companies consequently offer a choice between powder and polymer for the material from which the object is built.[14] Some companies use standard, off-the-shelf business paper as the build material to produce a durable prototype. The main considerations in choosing a machine are generally speed, cost of the 3D printer, cost of the printed prototype, and cost and choice of materials and color capabilities.[15]

Printers that work directly with metals are expensive. In some cases, however, less expensive printers can be used to make a mould, which is then used to make metal parts.[16]

Type Technologies Materials
Extrusion Fused deposition modeling (FDM) Thermoplastics (e.g. PLAABS), HDPEeutectic metals, edible materials
Wire Electron Beam Freeform Fabrication(EBF3) Almost any metal alloy
Granular Direct metal laser sintering (DMLS) Almost any metal alloy
Electron beam melting (EBM) Titanium alloys
Selective laser melting (SLM) Titanium alloysCobalt Chrome alloysStainless Steels,Aluminium
Selective heat sintering(SHS)[citation needed] Thermoplastic powder
Selective laser sintering (SLS) Thermoplasticsmetal powdersceramic powders
Powder bed and inkjet head 3D printing Plaster-based 3D printing (PP) Plaster
Laminated Laminated object manufacturing(LOM) Papermetal foilplastic film
Light polymerised Stereolithography (SLA) photopolymer
Digital Light Processing (DLP) photopolymer

Extrusion deposition

Fused deposition modeling: 1 – nozzle ejecting molten plastic, 2 – deposited material (modeled part), 3 – controlled movable table.

Fused deposition modeling (FDM) was developed by S. Scott Crump in the late 1980s and was commercialized in 1990 by Stratasys.[17]With the expiration of patent on this technology there is now a large open-source development community this type of 3D printer (e.g.RepRaps) and many commercial and DIY variants, which have dropped the cost by two orders of magnitude.

Fused deposition modeling uses a plastic filament or metal wire that is wound on a coil and unreeled to supply material to an extrusionnozzle, which turns the flow on and off. The nozzle heats to melt the material and can be moved in both horizontal and vertical directions by a numerically controlled mechanism that is directly controlled by a computer-aided manufacturing (CAM) software package. The model or part is produced by extruding small beads of thermoplastic material to form layers as the material hardens immediately after extrusion from the nozzle. Stepper motors or servo motors are typically employed to move the extrusion head.

Various polymers are used, including acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polylactic acid (PLA), high density polyethylene (HDPE), PC/ABS, and polyphenylsulfone (PPSU). In general the polymer is in the form of a filament, fabricated from virgin resins. Multiple projects in the open-source community exist that are aimed at processing post-consumer plastic waste into filament. These involve machines to shred and extrude the plastic material into filament.

FDM has some restrictions on the shapes that may be fabricated. For example, FDM usually cannot produce stalactite-like structures, since they would be unsupported during the build. These have to be avoided or a thin support may be designed into the structure which can be broken away during finishing processes.

Granular materials binding

The CandyFab granular printing system uses heated air and granulated sugar to produce food-grade art objects.

Another 3D printing approach is the selective fusing of materials in a granular bed. The technique fuses parts of the layer, and then moves the working area downwards, adding another layer of granules and repeating the process until the piece has built up. This process uses the unfused media to support overhangs and thin walls in the part being produced, which reduces the need for temporary auxiliary supports for the piece. A laser is typically used to sinter the media into a solid. Examples include selective laser sintering (SLS), with both metals and polymers (e.g. PA, PA-GF, Rigid GF, PEEK, PS, Alumide, Carbonmide, elastomers), and direct metal laser sintering (DMLS).

Selective Laser Sintering (SLS) was developed and patented by Dr. Carl Deckard and Dr. Joseph Beaman at the University of Texas at Austin in the mid-1980s, under sponsorship of DARPA.[18] A similar process was patented without being commercialized by R. F. Housholder in 1979.[19]

Selective Laser Melting (SLM) does not use sintering for the fusion of powder granules but will completely melt the powder using a high-energy laser to create fully dense materials in a layerwise method with similar mechanical properties to conventional manufactured metals.

Electron beam melting (EBM) is a similar type of additive manufacturing technology for metal parts (e.g. titanium alloys). EBM manufactures parts by melting metal powder layer by layer with an electron beam in a high vacuum. Unlike metal sintering techniques that operate below melting point, EBM parts are fully dense, void-free, and very strong.[20][21]

Another method consists of an inkjet 3D printing system. The printer creates the model one layer at a time by spreading a layer of powder (plaster, or resins) and printing a binder in the cross-section of the part using an inkjet-like process. This is repeated until every layer has been printed. This technology allows the printing of full color prototypes, overhangs, and elastomer parts. The strength of bonded powder prints can be enhanced with wax or thermoset polymer impregnation.

Lamination

In some printers, paper can be used as the build material, resulting in a lower cost to print. During the 1990s some companies marketed printers that cut cross sections out of special adhesive coated paper using a carbon dioxide laser, and then laminated them together.

In 2005, Mcor Technologies Ltd developed a different process using ordinary sheets of office paper, a Tungsten carbide blade to cut the shape, and selective deposition of adhesive and pressure to bond the prototype.[22]

There are also a number of companies selling printers that print laminated objects using thin plastic and metal sheets.

Photopolymerization

Stereolithography apparatus.

Main article: Stereolithography

Stereolithography was patented in 1987 by Chuck Hull. Photopolymerization is primarily used in stereolithography (SLA) to produce a solid part from a liquid.This process dramatically redefined previous efforts, from the Photosculpture method of François Willème (1830-1905) in 1860[23] through the photopolymer process of Mitsubishi`s Matsubara in 1974.[24]

In digital light processing (DLP), a vat of liquid polymer is exposed to light from a DLP projector under safelight conditions. The exposed liquid polymer hardens. The build plate then moves down in small increments and the liquid polymer is again exposed to light. The process repeats until the model has been built. The liquid polymer is then drained from the vat, leaving the solid model. The EnvisionTec Ultra[25] is an example of a DLP rapid prototyping system.

Inkjet printer systems like the Objet PolyJet system spray photopolymer materials onto a build tray in ultra-thin layers (between 16 and 30 µm) until the part is completed. Each photopolymer layer is cured with UV light after it is jetted, producing fully cured models that can be handled and used immediately, without post-curing. The gel-like support material, which is designed to support complicated geometries, is removed by hand and water jetting. It is also suitable for elastomers.

Ultra-small features can be made with the 3D microfabrication technique used in multiphoton photopolymerization. This approach traces the desired 3D object in a block of gel using a focused laser. Due to the nonlinear nature of photoexcitation, the gel is cured to a solid only in the places where the laser was focused and the remaining gel is then washed away. Feature sizes of under 100 nm are easily produced, as well as complex structures with moving and interlocked parts.[26]

Yet another approach uses a synthetic resin that is solidified using LEDs.[27]

Printers

Printers for domestic use

RepRap version 2.0 (Mendel).

MakerBot Cupcake CNC.

Airwolf 3D AW3D v.4 (Prusa).

Several projects and companies are making efforts to develop affordable 3D printers for home desktop use. Much of this work has been driven by and targeted at DIY/enthusiast/early adopter communities, with additional ties to the academic and hacker communities.[28]

RepRap is one of the longest running projects in the desktop category. The RepRap project aims to produce a free and open source software (FOSS) 3D printer, whose full specifications are released under the GNU General Public License, and which is capable of replicating itself by printing many of its own (plastic) parts to create more machines.[29] Research is under way to enable the device to printcircuit boards and metal parts.

Because of the FOSS aims of RepRap, many related projects have used their design for inspiration, creating an ecosystem of related or derivative 3D printers, most of which are also open source designs. The availability of these open source designs means that variants of 3D printers are easy to invent. The quality and complexity of printer designs, however, as well as the quality of kit or finished products, varies greatly from project to project. This rapid development of open source 3D printers is gaining interest in many spheres as it enables hyper-customization and the use of public domain designs to fabricate open source appropriate technology through conduits such as Thingiverse and Cubify. This technology can also assist initiatives in sustainable development since technologies are easily and economically made from resources available to local communities.[30]

The cost of 3D printers has decreased dramatically since about 2010, with machines that used to cost $20,000 costing less than $1,000.[31] For instance, as of 2013, several companies and individuals are selling parts to build various RepRap designs, with prices starting at about €400 /US$500.[32] The price of printer kits vary from US$400 for the Printrbot Jr. (derived from the previous RepRap models), to US$599 for the RoBo 3D Printer to over US$2000 for the Fab@Home 2.0 two-syringe system.[32] The Shark 3D printer comes fully assembled for less than US$2000. The open source Fab@Home project[33] has developed printers for general use with anything that can be squirted through a nozzle, from chocolate to silicone sealant and chemical reactants. Printers following the project’s designs have been available from suppliers in kits or in pre-assembled form since 2012 at prices in the US$2000 range.[32]

Printers for commercial and domestic use

The development and hyper-customization of the RepRap-based 3D printers has produced a new category of printers suitable for both domestic and commercial use. The least expensive assembled machine available is the Solidoodle 2, while the RepRapPro’s Huxley DIY kit is reputedly[weasel words] one of the more reliable of the lower-priced machines, at around US$680. There are other RepRap-based high-end kits and fully assembled machines that have been enhanced to print at high speed and high definition. Depending on the application, the print resolution and speed of manufacturing lies somewhere between a personal printer and an industrial printer. A list of printers with pricing and other information is maintained.[32] Most recently delta robots have been utilized for 3D printing to increase fabrication speed further.[34]

Applications

Three-dimensional printing makes it as cheap to create single items as it is to produce thousands and thus undermines economies of scale. It may have as profound an impact on the world as the coming of the factory did….Just as nobody could have predicted the impact of the steam engine in 1750—or the printing press in 1450, or the transistor in 1950—it is impossible to foresee the long-term impact of 3D printing. But the technology is coming, and it is likely to disrupt every field it touches.

— The Economist, in a February 10, 2011 leader[35]

An example of 3D printed limited editionjewellery. This necklace is made of glassfiber-filled dyed nylon. It has rotating linkages that were produced in the same manufacturing step as the other parts.

Additive manufacturing’s earliest applications have been on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants, and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, which was earlier only done with subtractive toolroom methods (typically slowly and expensively).[36] With technological advances in additive manufacturing, however, and the dissemination of those advances into the business world, additive methods are moving ever further into the production end of manufacturing in creative and sometimes unexpected ways.[36] Parts that were formerly the sole province of subtractive methods can now in some cases be made more profitably via additive ones.

Standard applications include design visualization, prototyping/CAD, metal casting, architecture, education, geospatial, healthcare, and entertainment/retail.

Industrial uses

Rapid prototyping

Main article: rapid prototyping

Full color miniature face models produced on a 3D Printer.

Printing going on with a 3D printer at Makers Party Bangalore 2013, Bangalore

Industrial 3D printers have existed since the early 1980s and have been used extensively for rapid prototyping and research purposes. These are generally larger machines that use proprietary powdered metals, casting media (e.g. sand), plastics, paper or cartridges, and are used for rapid prototyping by universities and commercial companies.

Rapid manufacturing

Advances in RP technology have introduced materials that are appropriate for final manufacture, which has in turn introduced the possibility of directly manufacturing finished components. One advantage of 3D printing for rapid manufacturing lies in the relatively inexpensive production of small numbers of parts.

Rapid manufacturing is a new method of manufacturing and many of its processes remain unproven. 3D printing is now entering the field of rapid manufacturing and was identified as a “next level” technology by many experts in a 2009 report.[37] One of the most promising processes looks to be the adaptation of laser sintering (LS), one of the better-established rapid prototyping methods. As of 2006, however, these techniques were still very much in their infancy, with many obstacles to be overcome before RM could be considered a realistic manufacturing method.[38]

Mass customization

Companies have created services where consumers can customize objects using simplified web based customization software, and order the resulting items as 3D printed unique objects.[39][40] This now allows consumers to create custom cases for their mobile phones.[41]Nokia has released the 3D designs for its case so that owners can customize their own case and have it 3D printed.[42]

Mass production[edit]

The current slow print speed of 3D printers limits their use for mass production. To reduce this overhead, several fused filament machines now offer multiple extruder heads. These can be used to print in multiple colors, with different polymers, or to make multiple prints simultaneously. This increases their overall print speed during multiple instance production, while requiring less capital cost than duplicate machines since they can share a single controller. Distinct from the use of multiple machines, multi-material machines are restricted to making identical copies of the same part, but can offer multi-color and multi-material features when needed. The print speed increases proportionately to the number of heads. Furthermore, the energy cost is reduced due to the fact that they share the same heated print volume. Together, these two features reduce overhead costs.

Many printers now offer twin print heads. However, these are used to manufacture single (sets of) parts in multiple colors/materials.

Few studies have yet been done in this field to see if conventional subtractive methods are comparable to additive methods.

Domestic and hobbyist uses

As of 2012, domestic 3D printing has mainly captivated hobbyists and enthusiasts and has not quite gained recognition for practical household applications. A working clock has been made[43] and gears have been printed for home woodworking machines[44] among other purposes.[45] 3D printing is also used for ornamental objects. Web sites associated with home 3D printing tend to include backscratchers, coathooks, etc. among their offered prints.

The open source Fab@Home project[33] has developed printers for general use. They have been used in research environments to produce chemical compounds with 3D printing technology, including new ones, initially without immediate application as proof of principle.[46] The printer can print with anything that can be dispensed from a syringe as liquid or paste. The developers of the chemical application envisage that this technology could be used for both industrial and domestic use. Including, for example, enabling users in remote locations to be able to produce their own medicine or household chemicals.[47][48]

Clothing

3D printing has spread into the world of clothing with fashion designers experimenting with 3D-printed bikinis, shoes, and dresses.[49] In commercial production Nike is using 3D printing to prototype and manufacture the 2012 Vapor Laser Talon football shoe for players of American football, and New Balance is 3D manufacturing custom-fit shoes for athletes.[49][50]

3D printing services

Some companies offer on-line 3D printing services open to both consumers and industries.[51] Such services require people to upload their 3D designs to the company website. Designs are then 3D printed using industrial 3D printers and either shipped to the customer or in some cases, the consumer can pick the object up at the store.[52]

Research into new applications

Future applications for 3D printing might include creating open-source scientific equipment[53][54] or other science-based applications like reconstructing fossils in paleontology, replicating ancient and priceless artifacts in archaeology, reconstructing bones and body parts in forensic pathology, and reconstructing heavily damaged evidence acquired from crime scene investigations. The technology is even being explored for building construction.

In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology.[55] By 2007 the mass media followed with an article in the Wall Street Journal[56] and Time Magazine, listing a 3D printed design among their 100 most influential designs of the year.[57] During the 2011 London Design Festival, an installation, curated by Murray Moss and focused on 3D Printing, was held in the Victoria and Albert Museum (the V&A). The installation was called Industrial Revolution 2.0: How the Material World will Newly Materialize.[58]

As of 2012, 3D printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.[59] Several terms have been used to refer to this field of research: organ printing, bio-printing, body part printing,[60] and computer-aided tissue engineering, among others.[61]

proof-of-principle project at the University of Glasgow, UK, in 2012 showed that it is possible to use 3D printing techniques to create chemical compounds, including new ones. They first printed chemical reaction vessels, then used the printer to squirt reactants into them as “chemical inks” which would then react.[46] They have produced new compounds to verify the validity of the process, but have not pursued anything with a particular application.[46] Cornell Creative Machines Lab has confirmed that it is possible to produce customized food with 3D Hydrocolloid Printing.[62]

The use of 3D scanning technologies allows the replication of real objects without the use of moulding techniques that in many cases can be more expensive, more difficult, or too invasive to be performed, particularly for precious or delicate cultural heritage artifacts[63] where direct contact with the molding substances could harm the original object’s surface.

An additional use being developed is building printing, or using 3D printing to build buildings. This could allow faster construction for lower costs, and has been investigated for construction of off-Earth habitats.[64][65]

Employing additive layer technology offered by 3D printing, Terahertz devices which act as waveguides, couplers and bends have been created. The complex shape of these devices could not be achieved using conventional fabrication techniques. Commercially available professional grade printer EDEN 260V was used to create structures with minimum feature size of 100 µm. The printed structures were later DC sputter coated with gold (or any other metal) to create a Terahertz Plasmonic Device. [66]

In 2013, Chinese scientists began printing ears, livers and kidneys, with living tissue. Researchers in China have been able to successfully print human organs using specialized 3D bio printers that use living cells instead of plastic. Researchers at Hangzhou Dianzi University actually went as far as inventing their own 3D printer for the complex task, dubbed the “Regenovo” which is a “3D bio printer.” Xu Mingen, Regenovo’s developer, said that it takes the printer under an hour to produce either a mini liver sample or a four to five inch ear cartilage sample. Xu also predicted that fully functional printed organs may be possible within the next ten to twenty years.[67][68] In the same year, researchers at the University of Hasselt, in Belgium had successfully printed a new jawbone for an 83-year-old Belgian woman. The woman is now able to chew, speak and breathe normally again after a machine printed her a new jawbone.[69]

In Bahrain, large-scale 3D printing using a sandstone-like material has been used to create unique coral-shaped structures, which encourage coral polyps to colonize and regenerate damaged reefs. These structures have a much more natural shape than other structures used to create artificial reefs, and have a neutral pH which concrete does not.[70]

Intellectual property

3D printing has existed for decades within certain manufacturing industries and many legal regimes, including patentsindustrial design rightscopyright, and trademark can apply. However, there is not much jurisprudence to say how these laws will apply if 3D printers become mainstream and individuals and hobbyist communities begin manufacturing items for personal use, for non profit distribution, or for sale.

Any of the mentioned legal regimes may prohibit the distribution of the designs used in 3d printing, or the distribution or sale of the printed item. To be allowed to do these things, a person would have to contact the owner and ask for a licence, which may come with conditions and a price.

Patents cover an idea, a technique, and generally last 20 years. So if a special type of wheel is patented, then printing and selling such a wheel would be illegal. Two questions which are less clear are whether printing for personal use would be restricted, and whether distributing designs would constitute infringement or a relate offence such as incitement to infringe.

Copyright covers an expression[71] and often last for the life of the author plus 70 years thereafter.[72] If someone makes a statue, they may have copyright on the look of that statue, so if someone sees that statue, they cannot then distribute designs to print an identical or similar statue.

When a feature has both artistic (copyrightable) and functional (patentable) merits, when the question has appeared in US court, the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item.[72]

Effects of 3D printing

Additive manufacturing, starting with today’s infancy period, requires manufacturing firms to be flexible, ever-improving users of all available technologies in order to remain competitive. Advocates of additive manufacturing also predict that this arc of technological development will counter globalisation, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations.[13] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely.[73]

Space exploration

As early as 2010, work began on applications of 3D printing in zero or low gravity environments.[74] The primary concept involves creating basic items such as hand tools or other more complicated devices “on demand” versus using valuable resources such as fuel or cargo space to carry the items into space.

Additionally, NASA is conducting tests to assess the potential of 3D printing to make space exploration cheaper and more efficient.[75] Rocket parts built using this technology have passed NASA firing tests. In July 2013, two rocket engine injectors performed as well as traditionally constructed parts during hot-fire tests which exposed them to temperatures approaching 6,000 degrees Fahrenheit (3,316 degrees Celsius) and extreme pressures.

Firearms

In 2012, the U.S.-based group Defense Distributed disclosed plans to “[design] a working plastic gun that could be downloaded and reproduced by anybody with a 3D printer.”[76][77]Defense Distributed has also designed a 3D printable AR-15 type rifle lower receiver (capable of lasting more than 650 rounds) and a 30 round M16 magazine.[78] Soon after Defense Distributed succeeded in designing the first working blueprint to produce a plastic gun with a 3D printer in May 2013, the United States Department of State demanded that they remove the instructions from their website.[79]

After Defense Distributed released their plans, questions were raised regarding the effects that 3D printing and widespread consumer-level CNC machining[80][81] may have on gun control effectiveness.[82][83][84][85]

The U.S. Department of Homeland Security and the Joint Regional Intelligence Center released a memo stating that “significant advances in three-dimensional (3D) printing capabilities, availability of free digital 3D printer files for firearms components, and difficulty regulating file sharing may present public safety risks from unqualified gun seekers who obtain or manufacture 3D printed guns,” and that “proposed legislation to ban 3D printing of weapons may deter, but cannot completely prevent their production. Even if the practice is prohibited by new legislation, online distribution of these digital files will be as difficult to control as any other illegally traded music, movie or software files.”[86]

Internationally, where gun controls are generally tighter than in the United States, some commentators have said the impact may be more strongly felt, as alternative firearms are not as easily obtainable.[87] European officials have noted that producing a 3D printed gun would be illegal under their gun control laws,[88] and that criminals have access to other sources of weapons, but noted that as the technology improved the risks of an effect would increase.[89][90] Downloads of the plans from the UK, Germany, Spain, and Brazil were heavy.[91][92]

Attempting to restrict the distribution over the Internet of gun plans has been likened to the futility of preventing the widespread distribution of DeCSS which enabled DVDripping.[93][94][95][96] After the US government had Defense Distributed take down the plans, they were still widely available via The Pirate Bay and other file sharing sites.[97] Some US legislators have proposed regulations on 3D printers, to prevent them being used for printing guns.[98][99] 3D printing advocates have suggested that such regulations would be futile, could cripple the 3D printing industry, and could infringe on free speech rights.

What is RepRap?

RepRap is humanity’s first general-purpose self-replicating manufacturing machine.

RepRap takes the form of a free desktop 3D printer capable of printing plastic objects. Since many parts of RepRap are made from plastic and RepRap prints those parts, RepRap self-replicates by making a kit of itself – a kit that anyone can assemble given time and materials. It also means that – if you’ve got a RepRap – you can print lots of useful stuff, and you can print another RepRap for a friend

RepRap is about making self-replicating machines, and making them freely available for the benefit of everyone. We are using 3D printing to do this, but if you have other technologies that can copy themselves and that can be made freely available to all, then this is the place for you too.

Reprap.org is a community project, which means you are welcome to edit most pages on this site, or better yet, create new pages of your own. Our community portal and New Development pages have more information on how to get involved. Use the links below and on the left to explore the site contents. You’ll find some content translated into other languages.

RepRap was the first of the low-cost 3D printers, and the RepRap Project started the open-source 3D printer revolution. It has become the most widely-used 3D printer among the global members of the Maker Community.

3D-printing-user-chart

A family using one RepRap to print only 20 domestic products per year (about 0.02% of the products available) can expect to save between $300 and $2000: “…the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average US household already.” Source: B.T. Wittbrodt et al., Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers, Mechatronics

RepRap Mendelmax 1.5, 3D Printer with Wade extruder

Extruder Head
Extruder Head

This extruder was designed for the RepRap Mendel (but will work on a Darwin or Huxley with adaptors) and is robust, provides a strong force to extrude, is cheap and DIY. It is an alternative to the standard extruder for RepRap Mendel and has the following advantages:

  • no need to buy/use expensive metal gears;
  • no need to do two precision flats on motor shaft;
  • no need to glue the PTFE barrel;

Other advantages over other extruders are:

  • extrude/print at high speed;
  • good for use with a low torque/cheap Nema 17 motor ; (Needs verification)
  • no need to use expensive and complex tools – just one hand drill, a file and a M3 tap;
  • no need to make splines on motor shaft